
Reinforcement Learning for
Operational Space Control

Jan Peters, Stefan Schaal
University of Southern California,

Los Angeles, CA 90089, USA

Abstract— While operational space control is of essential im-
portance for robotics and well-understood from an analytical
point of view, it can be prohibitively hard to achieve accurate
control in face of modeling errors, which are inevitable in
complex robots, e.g., humanoid robots. In such cases, learning
control methods can offer an interesting alternative to analytical
control algorithms. However, the resulting supervised learning
problem is ill-defined as it requires to learn an inverse mapping
of a usually redundant system, which is well known to suffer
from the property of non-convexity of the solution space, i.e.,
the learning system could generate motor commands that try
to steer the robot into physically impossible configurations. The
important insight that many operational space control algorithms
can be reformulated as optimal control problems, however, allows
addressing this inverse learning problem in the framework of
reinforcement learning. However, few of the known optimization
or reinforcement learning algorithms can be used in online
learning control for robots, as they are either prohibitively
slow, do not scale to interesting domains of complex robots,
or require trying out policies generated by random search,
which are infeasible for a physical system. Using a generalization
of the EM-based reinforcement learning framework suggested
by Dayan & Hinton, we reduce the problem of learning with
immediate rewards to a reward-weighted regression problem
with an adaptive, integrated reward transformation for faster
convergence. The resulting algorithm is efficient, learns smoothly
without dangerous jumps in solution space, and works well in
applications of complex high degree-of-freedom robots.

I. INTRODUCTION

In many control problems with complex robotic systems like
manipulator robots and anthropomorphic robots, the control
task is usually defined in external space, e.g., the Cartesian
coordinates of our 3D world. In contrast, motor commands
need to be generated at the level of the actuators, i.e., the
space internal to the robot, as for instance joint angles. In such
scenarios, the goal of control is to find the motor commands
that accomplish the task while simultaneously recruiting all
degrees-of-freedom of the robot in an optimal way, e.g., by
minimizing the amount of movement, the amount of energy
consumption, the jerkiness of movement, etc. The most ad-
vanced analytical framework to formulate such control prob-
lems is operational space control [1], [2]. Operational space
control has numerous advantageous features [1], [2]; among
the most important one is that it allows very compliant control
of robots, which is one of the key ingredients that will allow
robots to become a non-dangerous part of daily human life.
However, the drawback of operational space control, which,
so far, has limited its widespread application in robotics, is

that the control law is very sensitive to the quality of system
identification, i.e., the accurate knowledge of inertia matrix,
internal forces and Jacobians. Small errors in these terms can
result in very undesirable behavior and even lead to instability
of the entire control system [3].

The goal of this paper is to propose a general policy
learning1 solution for operational space control, i.e., a method
that does not require prior knowledge of any of the robot’s
kinematics and dynamics while yielding an accurate control
policy. For this purpose, the next section will discuss how
operational space control can be seen as an immediate reward
reinforcement learning problem. The EM-based framework
by Dayan & Hinton [5] provides a suitable starting point
for deriving appropriate learning algorithms. Interestingly,
reinforcement learning can be reduced to a reward-weighted
nonlinear regression problem in this context, which greatly
accelerates the speed of learning. This novel algorithm may
also be applicable in different robot learning problems, e.g., for
motor primitive learning. We evaluate our approach on simu-
lated anthropomorphic robot arms, and compare the results of
learning with analytical solutions.

II. FORMULATING OPERATIONAL SPACE CONTROL AS A

REINFORCEMENT LEARNING PROBLEM

Let us assume the robot dynamics can be modeled as a rigid
body dynamics system

M (q) q̈ = F (q, q̇, t) + u (1)

where q,q̇,q̈ are the generalized positions, velocities and
accelerations of the robot, u denotes our motor commands,
M (q) the inertia matrix of the robot, and F (q, q̇, t) all the
(potentially time t dependent) forces acting on the system
(e.g., Coriolis forces, centripetal force, gravity, friction, etc.).
In external space, the task is defined by a desired trajectory
xd (t), ẋd (t), ẍd (t), which is converted into some reference
dynamics

ẍref = ẍd + KD (ẋd − ẋ) + KP (xd − x) , (2)

where x = x (q) and ẋ = ẋ (q, q̇) = J (q) q̇ denote
the forward kinematics and differential kinematics of the
robot end-effector, respectively, and J the Jacobian of the

1Trajectory learning approaches which only work on a specific trajectory
while incorporating knowledgee of the system have previously been discussed
in the literature, e.g., see [4].

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB3.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2111

end-effector kinematics. The resulting control law of such a
problem are usually formulated in the form of

u = µ (q, q̇, ẍref,u0) (3)

and, for instance, could look like

u = JT (JM−1JT)−1(ẍref − J̇q̇ + JM−1F). (4)

As stated in Eq.(3), learning operational space control is
equivalent to obtaining a mapping s = (q, q̇, ẍref,u0) →
u = µ (s) from sampled data using a function approximator.
As the dimensionality of the task-space reference behavior
xref is lower than that of the motor commands u, infinitely
many solutions u exist for a given s. The solution space of
motor commands u achieving the same reference acceleration
ẍref does usually not form a convex set in most robots, a
problem first described in the context of learning inverse
kinematics [10], [14]. Thus, when learning s → u as a function
approximation or supervised learning problem, the learning
algorithm can create physically invalid solutions.

In order to be able to address operational space control as a
learning problem, an associated cost function is required that,
when optimized, results in an appropriate operational space
controller, e.g., Equation (4). A key insight of recent work [6]
was that a large class of operational space control laws can
be derived as the solution of a constrained immediate reward
optimization problem:

r (u) = − (u − u0)
T N (u − u0) (5)

s.t. Jq̈ = ẍref − J̇q̇,

where u0 is the default or nominal stabilizing behavior, e.g.,
a force which pulls the robot towards a static rest posture

u0 = −KDq̇ − KP (q − qrest), (6)

and u1 = u − u0 corresponds to the control signal that ac-
complishes the desired task goal, characterized by ẍref. N is a
positive definite metric that decides the relative importance of
the motor commands in the optimization. If an accurate model
is available, the general analytic solution to this optimization
problem is given by

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F) (7)

+ N−1/2(I − (N−1/2M−1JT)(JM−1N−1/2)+)N+1/2u0,

where the second summand fulfills the nominal control law u0

in the null-space of the first term. For example, Equation (4)
is derived for N = M−1 and u0 = 0. Of course, this solution
is only interesting when the dimensionality of ẍref is smaller
than that of u, which we assume in all the following.

The conclusion of this brief summary is that operational
space control can be viewed as an immediate reward reinforce-
ment learning problem [7] with high-dimensional, continuous
states s = [q, q̇, ẍref,u0] ∈ R

n and actions u ∈ R
m. The

goal of learning is to obtain an optimal policy u = µ (s)
such that the system follows the reference acceleration ẍref

while maximizing the immediate reward r (u) = −(u −
u0)T N(u−u0) for any given nominal behavior u0. In order to

incorporate exploration during learning, we need a stochastic
control policy u = µθ(q, q̇, ẍref)+ε, modeled as a probability
distribution πθ(u|s) = p(u|s, θ) with parameter vector θ. The
goal of the learning system is thus to find the policy parameters
θ that maximize

Jr (θ) =
∫

p (s)
∫

πθ (u|s) r (s,u) duds. (8)

p(s) denotes the distribution of states, which is treated as fixed
in immediate reward reinforcement learning problems [7].

III. REINFORCEMENT LEARNING BY REWARD-WEIGHTED

REGRESSION

Previous work in the literature suggested a variety of
optimizing methods which can be applied to immediate reward
reinforcement learning problems, e.g., gradient based methods
(e.g., REINFORCE, Covariant REINFORCE, finite difference
gradients, the Kiefer-Wolfowitz procedure, ARP algorithms,
CRBP, etc.) and random search algorithms (e.g., simulated an-
nealing or genetic algorithms) [5], [7], [8]. However, gradient-
based methods tend to be too slow for the online learning
that we desire in our problem, while randomized search
algorithms can create too arbitrary solutions, often not suitable
for execution on a robotic system. For learning operational
space control, we require a method that is computationally suf-
ficiently efficient to deal with high-dimensional robot systems
and large amounts of data, that has a low sample complexity,
that comes with convergence guarantees, and that is suitable
for smooth online improvement. For instance, linear regression
techniques and/or methods employing EM-style algorithms are
highly desirable.

A good starting point for our work is the probabilistic rein-
forcement learning framework by Dayan & Hinton [5]. As we
will show in the following, a generalization of this approach
allows us to derive an EM-algorithm which essentially reduces
the immediate reward learning problem to a reward-weighted
regression problem.

A. Reward Transformation

In order to maximize the expected return (Eq. 8) using
samples, we approximate

Jr (θ) ≈
∑n

i=1
πθ (ui|si) ri (9)

where ri = r (si,ui). For application of the probabilistic
reinforcement learning framework of Dayan & Hinton [5], the
reward needs to be strictly positive such that it resembles an
(improper) probability distribution. While this can be achieved
by a linear rescaling for problems for bounded rewards, for
unbounded rewards as discussed in this paper, a nonlinear
transformation of the reward Uτ (r) is required, with the
constraint that the optimal solution to the underlying problem
remains unchanged. Thus, we require that Uτ (r) is strictly
monotonic with respect to r, and additionally that Uτ (r) ≥
0 and

∫∞
0

Uτ (r) dr = const, resulting in the transformed
optimization problem

Ju (θ) =
∑n

i=1
πθ (ui|si) Uτ (ri) . (10)

ThB3.3

2112

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
ct

io
n

u
State s

A
ct

io
n

u

State s

Step 0

-2 0 2
-1

0

1
A

ct
io

n
u

State s

Step 3

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 20

-2 0 2
-1

0

1

A
ct

io
n

u
State s

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
ct

io
n

u

State s

A
ct

io
n

u

State s

Step 0

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 3

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 6

-2 0 2
-1

0

1

A
ct

io
n

u

State s

(b) Adaptive Reward Transformation

(a) Fixed Reward Transformation

Fig. 1. A comparison of fixed and adaptive reward transformation for learning
a linear policy π (a|s) = N(a|θ1s + θ2, σ2) under the transformed reward
u(r (s, a)) = exp

`−τ
`
q1a2 + q2as + sq2

3

´´
. The transformed reward is

indicated by the dotted blue ellipses, the variance of the action distribution is
indicated by the red thick ellipse, and the mean of the linear policy is shown
by the red thick line. With τ being adaptive, significantly faster learning of
the optimal policy is achieved. Step 0 shows the initial policy and initial
transformed reward, Step 1 shows the initial policy with adapted transformed
reward.

The reward transformation plays a more important role than
initially meets the eye: as already pointed out in [5], conver-
gence speed can be greatly affected by this transformation.
Making Uτ (r) an adaptive part of the learning algorithm by
means of some internal parameters τ can greatly accelerate the
learning speed and help avoid local minima during learning.
Figure 1 demonstrates this issue with a 1D continuous state
and 1D continuous action example, where the goal is to learn
an optimal linear policy. Using the algorithm that we will
introduce below, an adaptive reward transformation accelerated
the convergence by a factor of 4, and actually significantly
helped avoiding local minima during learning.

B. EM-Reinforcement Learning with Adaptive Reward Trans-
formation

To derive our learning algorithm, similar as in [5], we start
by establishing the lower bound

log Ju (θ) (11)

= log
∑n

i=1
q (i)

πθ (ui|si) Uτ (ri)
q (i)

≥
∑n

i=1
q (i) log

πθ (ui|si) Uτ (ri)
q (i)

(12)

=
∑n

i=1
q (i) [log πθ (ui|si) + log Uτ (ri) − log q (i)] (13)

= F (q, θ, τ) , (14)

due to Jensens inequality. The re-weighting distribution q (i)
obeys the constraint∑n

i=1
q (i) − 1 = 0. (15)

The resulting EM algorithm is given below.
Algorithm 1: An EM algorithm for optimizing both the

expected reward as well as the reward-transformation is given
by an E-Step

qk+1 (j) =
πθk

(uj |sj) Uτk
(rj)∑n

i=1 πθ (ui|si) Uτk
(ri)

, (16)

an M-Step for the policy parameter update given

θk+1 = arg max
θ

∑n

i=1
qk+1 (i) log πθ (ui|si) , (17)

and a M-Step for the adaptive reward transformation given by

τk+1 = arg max
τ

∑n

i=1
qk+1 (i) log Uτ (ri) . (18)

Proof: The E-Step is given by

qk+1 = arg max
q

F (q, θ, τ) (19)

while fulfilling the constraint

0 =
∑n

i=1
q (i) − 1. (20)

Thus, we obtain a constrained optimization problem with
Lagrange multiplier λ:

L (λ, q) =
∑n

i=1
q (i) [log πθ (ui|si) + log Uτ (ri)

− log q (i) + λ] − λ.

Optimizing L (λ, q) with respect to q and λ results in Eq.(16).
Optimizing F (qk+1, θ, τ) with respect to θ and τ yields
Eqs.(17, 18).

C. Reinforcement Learning by Reward-Weighted Regression

Let us assume the specific class of normally distributed
policies:

πθ (u|s) = N (
u|µθ (s) , σ2I

)
(21)

with a nominal or mean behavior µθ (s) = φ (s)T
θ where

φ (s) denotes some fixed preprocessing of the state by basis
functions and σ2I determines the exploration2. Furthermore,
we choose the reward transformation

Uτ (r) = τ exp (−τr) , (22)

2Note that σ2I could be replaced by a full variance matrix with little
changes in the algorithm. However, this would result in a quadratic growth of
parameters with the dimensionality of the state and is therefore less desirable.

ThB3.3

2113

which, for r > 0 fulfills all our requirements on a reward
transformation (cited from Sec.III-A). Algorithm 1 thus be-
comes:

Algorithm 2: The update equations for the policy
πθ (u|s) = N (

u|µθ (s) , σ2I
)

are:

θk+1 =
(
ΦT WΦ

)−1
ΦT WY, (23)

σ2
k+1 =

∥∥Y − θT
k+1Φ

∥∥2

W
, (24)

where

W =

(
n∑

i=1

Uτ (ri)

)−1

diag (Uτ (r1) , Uτ (r2) , . . . , Uτ (rn)) ,

(25)
denotes a diagonal matrix with transformed rewards,

Φ = [φ (s1) , φ (s2) , . . . , φ (sn)]T , (26)

and
Y = [u1,u2, . . . ,un]T (27)

the motor commands. The update of the reward transformation
Uτ (r) = τ exp (−τr) is

τk+1 =
∑n

i=1 Uτk
(ri)∑n

i=1 Uτk
(ri) ri

. (28)

Proof: When computing qk+1 (j) from samples in
Eq.(16), we have

qk+1 (j) =
Uτk

(rj)∑n
i=1 Uτk

(ri)
(29)

as the probabilities are replaced by relative frequencies. We
insert the policy

πθ (u|s) =
(
2πσ2

)− d
2 exp

(
− (u − φ (s)T

θ)T (u − φ (s)T
θ)

2σ2

)
,

into Equation (17). By differentiating with respect to θ and
equating the result to zero, we obtain

θ =

(
n∑

i=1

qk+1 (i) φ (si) φ (si)
T

)−1(n∑
i=1

qk+1 (i) φ (si)ui

)
.

In matrix vector form, this corresponds to Eq.(23). Analo-
gously, the reward transformation is obtained from differenti-
ation with respect to τ as

n∑
i=1

qk+1 (i)
∂

∂τ
log Uτ (ri) =

n∑
i=1

qk+1 (i)
(
τ−1 − ri

)
= 0.

which results in Eq.(28).

IV. LEARNING SETUP FOR OPERATIONAL SPACE

CONTROL

We are now in the position to return to our original objective
of learning operational space control. As stated previously, the
learning operational space control is equivalent to obtaining a
mapping

s = (q, q̇, ẍref,u0) → u (30)

from sampled data using a function approximator. However,
due to the difference in dimensionality of task-space and
action-space, infinitely many solutions exist but usually do
not form a convex set in most robot. Thus, when learning
s → u as a function approximation problem, the learning
algorithm can create physically invalid solutions. Nevertheless,
the non-convexity issue can be resolved by two insights. The
first insight was discussed in Section II where we reformu-
lated operational space control as an immediate reinforcement
learning problem.

The second insight is that the non-convexity issue can be ad-
dressed locally by employing a spatially localized supervised
learning system, an approach that was first introduced in the
context of inverse kinematics learning [9], [10]. The feasibility
of this idea can be demonstrated by re-writing Eq.(4) in its
proper functional form, i.e., not as an inverse function:

ẍ = J(q)q̈ + J̇(q, q̇)q̇,

= J(q)M−1(q) (u + F(q, q̇)) + J̇(q, q̇)q̇.

If we partition the state space of the robot, spanned by q, q̇,
into regions were q, q̇ is approximately constant, the average
over all solutions resulting in a particular ẍref can be written
as:

ẍref = 〈ẍref 〉 =
〈
JM−1 (u + F) + J̇q̇

〉
= JM−1 (〈u〉 + F) + J̇q̇ = JM

−1
(u + F) + J̇q̇.

Thus, in the vicinity of same q,q̇ all possible u that achieve
the same ẍref form a convex solution set, since any average
over different solutions u1, u2, ..., will be guaranteed to
still achieve the given ẍref

3. Consequently, our approach to
learning operational space control will partition the control
law in the form of locally linear controllers

ui = [ẍT
ref, q̇

T , 1]βi, (31)

which are active only in a region around a particular qi, q̇i

(note that we added constant input in Eq. (31) to account for
the intercept of a linear function). From a control engineering
point of view, this argument corresponds to the insight that
nonlinear control can often be accomplished through local
linearizations at the point of interest, and that, in general,
linear systems do not have the problem of non-convexity of
the solution space when learning an inverse function.

Next we need to address how to find an appropriate piece-
wise linearization for the locally linear controllers. For this
purpose, we learn a locally linear forward or predictor model:

ẍi = [q̇T ,uT , 1]β̂i, (32)

Learning this forward model is a standard supervised learning
problem, as the mapping is guaranteed to be a proper function.
A method of learning such a forward model that automatically

3Note, that the localization in velocity q̇ can be dropped for a pure rigid
body formulation as it is linear in the q̇iq̇j for all degrees of freedom i, j;
this, however, is not necessarily desirable as it will add new inputs to the
local regression problem whose number grows quadratically with the number
of degrees of freedom.

ThB3.3

2114

(a) 3 DoF Robot Arm

(b) Tracking Performance

0.44 0.48 0.52 0.56

0.04
0.06
0.08
0.1
0.12
0.14
0.16

����������	��
���

�
�
�
�
��

�
�
��

	�
�

�

��
�

���	���
��������

(c) Optimal vs Learned Motor Command

0 0.5 1 1.5 2-10

0
10
20
30
40
50
60

�	���
�
�
�
�
�
�
�
�
�
��

�

�

��

��
��

�
�

�
�
�
�
�
��

��
	���
��������

�

�
�

�
�

Fig. 2. (a) screen shot of the 3 DOF arm simulator, (b) near ideal tracking
performance for a planar figure-8 pattern for the 3 DOF arm, and (c) a
comparison between the analytically obtained optimal control commands to
the learned ones for one figure-8 cycle of the 3DOF arm exhibits that a near-
optimal policy is obtained.

also learns a local linearization is Locally Weighted Projec-
tion Regression (LWPR) [11], a fast online learning method
which scales into high-dimensions, has been used for inverse
dynamics control of humanoid robots, and can automatically
determine the number of local models that are needed to
represent the function. The membership to a local model is
determined by a weight generated from a Gaussian kernel:

wi(q, q̇) = exp

(
−1

2

([
q
q̇

]
− ci

)T

Di

([
q
q̇

]
− ci

))
(33)

centered at a fixed ci in (q, q̇)-space, and shaped by a
diagonal distance metric Di. The Gaussian kernel allow the

combination of the different local controllers using

u =
∑n

i=1 wi (q, q̇) [ẍT
ref, q̇

T , 1]βi∑n
i=1 wi (q, q̇)

. (34)

For a closer description of this statistical learning algorithm
see [11].

As learning the forward model provides a suitable partition-
ing of the robot’s state space into regions of local linearity,
we re-use this partitioning to learn a local controller in
each partition, an approach that resembles several previous
forward-inverse model learning approaches [12], [13]. The
local controllers are learned using the reward-weighted regres-
sion approach described in Section III, with metric N = I in
Eq.5 – the reinforcement learning ensured that all local con-
trollers learned a globally consistent solution to the operational
space control task. Each local controller maintained its own
adaptive reward transformation and associated parameter τi.
The nominal control law u0 is learned separately; it consists of
a gravity compensation component which is obtained directly
with LWPR by supervised learning and a joint-space force
pushing the robot towards a rest posture as explained in the
introduction.

V. EVALUATIONS

We evaluated our approach on two different simulated,
physically realistic robots: (i) a three degree-of-freedom (DOF)
planar robot arm shown in Figure 2 (a) and (ii) a seven DOF
simulated SARCOS master robot arm – an implementation on
the real, physical SARCOS master robot arm (Figure 3 (a)) is
currently in progress.

Both experiments were conducted as follows: first, learning
the forward models and an initial control policy in each local
model was obtained from random point-to-point movements
in joint space using a simple PD control law. This “motor
babbling” exploration was necessary in order bootstrap learn-
ing with some initial data, as we would otherwise experience
rather slow learning, as typically observed in similar direct-
inverse learning approaches [14]. The measured end-effector
accelerations served as desired acceleration in Eq.31, and
all other variables for learning the local controllers were
measurable as well. Subsequently, the learning controller was
used on-policy with the normally distributed actuator noise
serving as exploration.

Both robots learned to track desired trajectories with high
accuracy, as shown in Figures 2 (b) and 3 (b). For the three
DOF arm, we verified the quality of the learned control
commands in comparison to the analytical solution, given in
Eq.(7): Figure 2 (c) demonstrates that the motor commands of
the learned and analytically optimal case are almost identical.
Learning results of the simulated seven DOF Sarcos robot
achieved almost the same end-effector tracking quality and
is shown in Figure 2 (c). It exhibits only slightly increased
errors, however, the joint commands were not quite as close
to the optimal ones as for the 3 DOF arm – the rather high
dimensional learning space of the 7 DOF arm most likely
requires more extensive training and more careful tuning of

ThB3.3

2115

(a) SARCOS Master Robot Arm

(b) Tracking Performance

0.34 0.38
-0.1

-0.05

0

0.05

0.1

y-z plane

y

z

0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.1

-0.05

0

0.05

0.1

x-z plane

x

z

Fig. 3. (a) Anthropomorphic Sarcos Master Arm, used as simulated system
and in progress of actual robot evaluations. (b) Tracking performance for a
planar figure-8 pattern for the simulated Sarcos Master arm.

the LWPR learning algorithm to achieve local linearizations
with very high accuracy and with enough data to find the
optimal solution. The 3 DOF required about 2 hours of real-
time training, while setup was optimized for the 7 DOF arm
where 60 minute run of real-time training was sufficient for
achieving the quality exhibited on the test trajectory in Figure
3 (b).

The implementation on the real SARCOS Master Arm is in
progress. To date, we have shown that solutions which were
pre-trained using data obtained with the real robot allow the
offline learning of a controller that works in the SARCOS
Master Arm simulator. However, some communication delays
between the learning system hosted on an external PowerPC
G5 and the real-time system need to be reduced in order to

complete the robot experiment which is expected to happen in
the next 1-2 months.

VI. CONCLUSION

This paper contributes in two different ways to advancing
the state-of-the-art of learning control. First, we introduced
a framework for learning operational space control, a type
of controller that has found little practical realizations due to
problems with system identification in actual complex robots.
Our learning methods avoid system identification entirely.
Second, we introduced the idea of reinforcement learning by
reward-weighted regression. While we realized this method
here for immediate reward problems, i.e., finding optimal
solutions in resolving redundancy in operational space control,
we believe that there are much broader applications also in
the realm of temporally delayed rewards, in particular for
learning from trajectories or roll-outs. Reinforcement learning
by reward-weighted regression has some of the flavor that was
envisioned for modern approaches to reinforcement learning,
i.e., the transformation of the reinforcement learning problem
into an efficient supervised learning problem. We demonstrated
the success of our approach on implementations on complex
robot simulations, which will be followed by actual robot
implementations in the near future.

REFERENCES

[1] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal of
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[2] R. Featherstone, Robot dynamics algorithms. Kluwer Academic
Publishers, 1987.

[3] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Comparative
experiments on task space control with redundancy resolution,” in IEEE
International Conference on Intelligent Robots and Systems, 2005.

[4] A. D. Luca and F. Mataloni, “Learning control for redundant manipu-
lators,” in Proceedings of the International Conference in Robotics and
Automation (ICRA), 1991.

[5] P. Dayan and G. E. Hinton, “Using expectation-maximization for
reinforcement learning,” Neural Computation, vol. 9, no. 2, pp. 271–278,
1997. [Online]. Available: citeseer.ist.psu.edu/dayan97using.html

[6] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in IEEE International Conference on Intelligent Robots and
Systems (IROS 2001), 2001.

[7] I. M. Jordan and Rumelhart, “Supervised learning with a distal teacher,”
in Cognitive Science, vol. 16, 1992, pp. 307–354.

[8] J. Peters, M. Mistry, F. Udwadia, and S. Schaal, “A unifying methodol-
ogy for the control of robotic systems,” in IEEE International Confer-
ence on Intelligent Robots and Systems, 2005.

[9] L. P. Kaebling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[10] J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. Hoboken, NJ: Wiley, 2003.

[11] D. Bullock, S. Grossberg, and F. H. Guenther, “A self-organizing neural
model of motor equivalent reaching and tool use by a multijoint arm,”
Journal of Cognitive Neuroscience, vol. 5, no. 4, pp. 408–435, 1993.

[12] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparameteric statistics for real-time robot learning,” Applied
Intelligence, vol. 17, no. 1, pp. 49–60, 2002.

[13] M. Haruno, D. M. Wolpert, and M. Kawato, “Multiple paired forward-
inverse models for human motor learning and control,” in Advances
in Neural Information Processing Systems 11. Cambridge, MA: MIT
Press, 1999.

[14] M. Kawato and D. Wolpert, “Internal models for motor control,”
Novartis Found Symp, vol. 218, pp. 291–304, 1998.

ThB3.3

2116

